Что такое GPS?
Существует несколько источников ошибок измерений и источников ошибок определения интересующих параметров.
Содержание
- Глобальные системы позиционирования
- Режимы измерения, измеряемые величины
- Структура системы
- Спутники
- Обработка спутниковых фазовых измерений
- Источники ошибок и точность измерений
Глобальные системы позиционирования
Существуют две глобальные системы позиционирования – Global Positioning Systems (GPS). В Советском Союзе создана ГЛОНАСС – Глобальная Навигационная Спутниковая Система. В США создана американская NAVSTAR – Navigation System with Timing and Ranging – навигационная система, основанная на измерении времени и дальности. Американская система работает в операционном режиме, то есть она в полной мере технически и коммерчески реализована. Геодезист или навигатор, желающий стать пользователем этой системы, может приобрести аппаратуру и программное обеспечение (soft). Приемники и программное обеспечение ГЛОНАСС пока не столь доступны. Здесь рассмотрена GPS NAVSTAR как система более доступная пользователю-геодезисту. Для краткости будем далее называть ее, как это делают все, просто GPS. О ГЛОНАСС написано в изданной в МГУ книге Б.Б. Серапинаса [25] и в книге [28]. Официальная информация находится по адресу:
GPS NAVSTAR GLOBAL Positioning System
Термин позиционирование означает не только определение местоположения, то есть координат объекта. Вместе с координатами определяют вектор скорости его движения. Проще говоря, определяют направление и скорость движения объекта. Координаты и составляющие скорости задают вектор состояния объекта. Таким объектом может быть судно, корабль, самолет, вертолет, спутник, автомобиль, пеший оператор, либо другой подвижный носитель. Перед разработчиками системы ставилась определенная задача. Система должна обеспечивать определение вектора состояния пользователя в любое время, в любой точке земной поверхности и с точностью, необходимой пользователю. Опыт показывает, что эта задача решена. Придерживаясь информации, содержащейся в работе [6], приведем данные об истории создания GPS.
Система находится в ведении Офиса Объединенной Программы – Joint Program Offise (JPO). Офис расположен в Космическом подразделении командных систем военно-воздушных сил США – Air Force Systems Command Space Division. Подразделение находится на базе военно-воздушных сил США – Air Force Base (AFB) – в Лос-Анджелесе. В 1973 году JPO получил приказ Министерства Обороны США «установить, разработать, тестировать, освоить и развернуть спутниковую систему позиционирования». NAVSTAR является результатом выполнения этого приказа. Общепринятое определение системы звучит следующим образом. Глобальная система позиционирования (GPS) NAVSTAR является всепогодной спутниковой навигационной системой, разработанной Министерством Обороны США с тем, чтобы отвечать требованиям вооруженных сил по точному определению местоположения объектов, скорости их перемещения, а также по точной временной привязке в единой системе относимости в любой точке земной поверхности или окружающего пространства в непрерывном режиме. Геодезисты сразу поняли, что эту военную навигационную систему можно эффективно использовать в мирных геодезических целях.
Интересно, что до того, как был разработан навигационный кодовый приемник GPS, геодезисты успели разработать и создать геодезический фазовый приемник Макрометр. Спутниковая система дороже системы наземного базирования. Спутники необходимо создавать, запускать, отслеживать, оберегать и по мере выработки ресурса – ликвидировать. На затраты идут потому, что спутниковая система совмещает глобальность с высокой точностью позиционирования. Действительно, существуют глобальные наземные системы, но они, являясь длинноволновыми или сверхдлинноволновыми, определяют местоположение судна в открытом океане с ошибкой около мили. Существуют ультракоротковолновые высокоточные системы наземного базирования, но они определяют координаты объекта лишь в пределах прямой видимости, то есть на расстоянии в 10-20 километров. Спутниковая система является высокоточной, поскольку работает в диапазоне сверхвысоких частот. Одновременно она является глобальной, потому что в любой точке земной поверхности над горизонтом всегда находятся несколько спутников системы.
По геометрической сути спутниковая система является дальномерной. Можно было бы сказать, что измеряют расстояния от приемника до спутников и местоположение приемника определяют линейной засечкой. Однако такое утверждение верно лишь в первом приближении. На самом деле, как сказано ранее, в геотронике измеряют не расстояние, но величины, функционально с ними связанные. По физической или аппаратурной сути спутниковая система является беззапросной. Опорные генераторы спутника и приемника независимы и успешное выполнение измерений требует, чтобы их рассинхронизация была учтена. Система работает в трех неразрывно связанных режимах. Связь между режимами осуществляет, в основном, программное обеспечение.
Режимы измерения, измеряемые величины
Кодовый режим – это режим, изначально заложенный в систему. Сигнал каждого спутника содержит его эфемериды – данные о местоположении спутника, позволяющие вычислить координаты спутника в земной системе координат. Кроме того, кодовый сигнал содержит передаваемую каждые шесть секунд временную метку. Момент ухода временной метки со спутника, определенный по часам спутника, подписан на ней. Приемник захватывает сигнал спутника, идентифицирует спутник по коду его сигнала, считывает временную метку и определяет время tr прохождения сигнала от спутника до приемника. Это позволяет вычислить дальность от приемника до спутника. Все было бы именно так, если бы часы приемника и спутника шли синхронно. На самом деле между их показаниями в один и тот же момент времени существует ненулевая разность – относительная поправка часов. Она входит в результат определения дальности. Поэтому в данном случае дальность называют псевдодальностью. Говорят, что в кодовом, навигационном режиме измеряемой величиной является кодовая псевдодальность. Поправку часов приемника относительно часов спутника на момент наблюдений определяют как неизвестную величину из обработки результатов этих наблюдений.
Таким образом, для каждого пункта имеется не три неизвестных – три координаты пункта – а четыре неизвестных: три координаты и поправка часов приемника. Следовательно, для мгновенного определения местоположения необходимо, чтобы на антенну приемника одновременно приходили сигналы не менее чем от четырех спутников системы. Созвездие спутников системы обеспечивает это требование.
Фазовый режим – это режим высокоточных геодезических измерений. В нем одновременно участвуют по крайней мере два приемника. В этом режиме получают координаты вектора базы, то есть разность координат пунктов, на которых установлены антенны спутниковых приемников. Ошибка определения вектора базы составляет от нескольких миллиметров до нескольких сантиметров. Измерения выполняют на несущей частоте сигнала спутника, освобожденного от кода процедурой квадратирования. Измеряемой величиной является мгновенная разность фаз сигнала спутника и сигнала генератора приемника. Здесь уместно сказать о терминах абсолютные и относительные определения. По более или менее сложившейся терминологии под абсолютными определениями понимают определение координат пункта, то есть работу в кодовом навигационном режиме. Под относительными определениями понимают определение местоположения одного пункта относительно другого – твердого, исходного пункта. Таков разностный фазовый режим геодезических измерений. Относительными определениями можно также назвать дифференциальный навигационный кодовый режим, когда местоположение и вектор скорости подвижного носителя определяют относительно дифференциальной станции.
Допплеровский режим, точнее режим интегрального допплера, является как бы побочным по отношению к фазовому. Допплеровская частота пропорциональна скорости изменения фазы, поэтому допплеровскую частоту получают попутно с измерением фазы, без каких-либо дополнительных затрат. Несмотря на «бесплатность» этот режим дает богатую информацию о местоположении пункта. Следует напомнить, что первые спутниковые радионавигационные системы были исключительно допплеровскими.
Как сказано, режимы наблюдений неразрывно связаны друг с другом. Геодезиста более всего интересует высокоточный фазовый режим, однако приближенные значения координат пунктов, необходимые для уравнивания, он получает из кодовых и допплеровских измерений. Перемещение по объекту и поиск исходных пунктов также очень облегчает использование кодового навигационного режима. Далее рассмотрим измеряемые величины более детально.
1.1. Кодовые псевдодальности. Каждый спутник системы излучает несущие колебания с длиной волны около 20 сантиметров, манипулированные по фазе кодовыми последовательностями. О структуре сигнала подробнее написано в разделе 3. Здесь скажем, что все спутники GPS работают на одних и тех же несущих частотах, но каждому спутнику присущ его индивидуальный код. Спутниковый приемник генерирует копии кода каждого спутника и идентифицирует спутники именно по форме кода. Сразу после включения приемника он начинает захват сигналов спутников. Другими словами, приемник выполняет корреляционную обработку сигнала спутника и генерируемых этим приемником копий кодов, перебирая эти копии. Отличие функции корреляции от нуля означает, что спутник идентифицирован, а его сигнал – захвачен.
После захвата сигнала первого же спутника приемник начинает скачивать кодовую информацию, содержащуюся в навигационном спутниковом сообщении. В частности, скачивается альманах. Об этом подробнее написано в разделе 3.2. Иногда приемник самостоятельно принимает решение перейти к скачиванию информации с другого, более «удобного», по его мнению, спутника, как правило, находящегося ближе всего к зениту пункта наблюдения. Вся процедура отражается на дисплее, оператор может это наблюдать, но не может вмешаться. После захвата сигналов достаточного количества спутников приемник начинает определять навигационные координаты своей антенны по измеренным кодовым псевдодальностям. Для определения всех трех координат антенны необходимо работать с четырьмя спутниками. Такой режим обозначают 3D (3 Dimensional) – трехмерный. В навигационных приемниках предусмотрена возможность работы в двумерном режиме 2D. Приемник, пока он успел захватить сигнал только трех спутников, определяет плановые координаты пункта. После захвата сигнала четвертого спутника приемник переходит в режим 3D.
Кодовые псевдодальности определяют из корреляционной обработки кодового сигнала спутника, и копии этого сигнала, генерируемой приёмником. С/А-кодовый и Р-кодовый сигналы спутника сопровождаются временными метками, генерируемые спутниковым стандартом частоты и времени – часами спутника. Аналогично кодовые сигналы приёмника сопровождаются временными метками, генерируемыми часами приёмника. В ходе корреляционной обработки осуществляют поиск максимума коэффициента корреляции двух сигналов. В результате получают относительную временную задержку двух сигналов как временной интервал между одноимёнными временными метками. Этот временной интервал, исправленный за задержки сигнала в атмосфере и еще за влияние ряда факторов и умноженный на скорость сигнала, дает псевдодальность. Ее вычисляют по формуле для случая однократного прохождения сигнала по дистанции. Отличие в том, что результат искажен поправкой часов приемника относительно часов спутника. По физической сути измерение кодовых псевдодальностей выполняют, реализуя временной метод измерений с кодовой модуляцией сигнала, проходящего дистанцию однократно. Зная из навигационного сообщения координаты спутников в момент наблюдений и используя измеренные псев до дальности, приемник определяет координаты антенны. Задача аналогична линейной пространственной засечке. Отличие в том, что в дополнение к координатам антенны получают поправку часов приемника. Ошибку измерений характеризует URA (User Range Accuracy) – точность измерения дальностей (до каждого спутника) для данного пользователя. Ошибка определения координат и поправки часов зависит также от геометрии наблюдений. Вся эта информация также выдается на дисплей. О геометрическом факторе написано в разделе 1.4.
В кодовом режиме работают все спутниковые приемники – от недорогого чисто кодового навигационного приемника, помещающегося на ладони, до самого совершенного и дорогого геодезического фазового приемника.
1.2. Фазовые измерения. В геодезическом приемнике измеряют мгновенную разность фаз сигнала спутника и колебания приемника. Напомним, что фазовые измерения являются наиболее точными. За высокую точность приходится расплачиваться усилиями, потраченными на разрешение многозначности фазовых измерений. Сигнал спутника не является гармоническим, как это необходимо для фазовых измерений. Напротив, он модулирован по фазе сложным псевдошумовым кодом. Чтобы выполнить фазовые измерения, необходимо убрать кодовую модуляцию. Так и делают, используя операцию квадратирования (см. раздел 1.3). Принимаемый сигнал умножают на самого себя. В результате получается сигнал, частота которого равна удвоенной несущей частоте сигнала спутника. Это колебание усиливают и именно на нем выполняют фазовые измерения. При этом кодовую информацию не игнорируют. Ее в полной мере используют для получения навигационных координат пунктов и для приема навигационного сообщения. В спутниковых системах принято обозначать дальность до спутника буквой р. С учетом этого запишем формулу, связывающую дальность до спутника с измеренной разностью фаз. Основой служит формула для беззапросного фазового метода. Для случая спутниковых измерений она имеет вид (1):
Здесь ρ(t) – мгновенное расстояние до спутника в момент t; φ(t) – мгновенное измеренное значение разности фаз; δφ? – начальная фаза колебаний спутника; δφr – начальная фаза колебаний приемника.
Таким образом, при кодовых измерениях играет роль несинхронность показаний часов спутника и приемника, а при фазовых измерениях играет роль несинфазность колебаний опорных генераторов спутника и приемника. Аппаратурно, то есть путем организации каких-то дополнительных каналов связи между приемником и спутником, эти параметры определить невозможно. Поэтому несинхронность определяют так, как сказано в разделе 1.1, а несинфазность исключают из результатов обработки путем формирования разностей фазовых измерений, как описано в разделе 4.2.
В формуле (1) измеряемая величина разности фаз меняется со временем из-за изменения дальности до спутника. Вследствие эффекта Допплера со временем меняется значение частоты / принимаемого сигнала.
1.3. Интегральный допплер. Допплеровские измерения в режиме интегрирования допплеровской частоты позволяют получать разность расстояний от определяемого пункта до двух исходных пунктов. В случае спутниковых измерений роль исходных пунктов выполняют спутники. Напомним, что в разностных наземных системах определяемый пункт получают как точку пересечения изолиний – гипербол. В случае спутниковых измерений, когда решается не плоская, а пространственная задача, речь идет не о изолиниях, но об изоповерхностях. В случае допплеровских измерений такой поверхностью является гиперболоид; местоположение пункта определяют как точку пересечения гиперболоидов. Их должно быть как минимум три, следовательно, одновременно необходимо наблюдать три пары спутников. Геометрия наблюдений в этом случае такова, что гиперболоиды пересекаются под довольно острыми (тупыми) углами. Это гораздо хуже, чем при дальномерных измерениях, когда изоповерхности – сферы могут пересекаться под углами, близкими к 90°. Тем не менее, гиперболическую засечку, раз она уже есть, используют при обработке результатов в качестве полезного дополнительного материала.
1.4. Изоповерхности, геометрический фактор. Пусть с использованием дальномерного устройства необходимо определить местоположение пункта относительно исходных пунктов. Местоположение вновь определяемого пункта невозможно определить с точностью, которая выше точности измерений. В лучшем случае ошибка определения местоположения равна ошибке измерений. Сказанное можно выразить в виде формулы, связывающей ошибку mопр определения местоположения и ошибку измерения mизм (2):
mопр=(DOP)mизм
Здесь DOP – Dilution Of Precision – падение ТОЧНОСТИ, размывание ТОЧНОСТИ из-за геометрии наблюдений, геометрический фактор. Применительно к спутниковым наблюдениям – это коэффициент, определяющий, во сколько раз ошибка определения больше ошибки измерения. DOP не может быть меньше единицы, но чем он меньше, тем лучше. Величина DOP зависит от того, под какими углами пересекаются изоповерхности, то есть от геометрии наблюдений.
Существует несколько видов DOP. DOP по плановому положению называют HDOP (Horisontal DOP). DOP по высоте (вертикали) называют VDOP (Vertical DOP). Сумма квадратов этих DOP дает квадрат PDOP, то есть DOP по положению – Position DOP. Опыт работы говорит, что при высокоточных измерения PDOP не должен превышать трех единиц. При рядовых работах, например при определении координат опознаков, он не должен превышать семи. К сожалению, пока не существует инструкций, регламентирующих предельные значения такого рода параметров, да и вообще других допусков на точность и продолжительность измерений. Сейчас все делается лишь на основе собственного опыта. DOP по определению поправки часов называют TDOP (Time DOP). Сумма квадратов PDOP и TDOP дает квадрат GDOP – геометрический DOP (Geometrical DOP). Он является наиболее общей характеристикой геометрических условий наблюдений.
PDOP имеет ясный геометрический смысл. Представим пункт наблюдений, из которого направлены на четыре наблюдаемых спутника векторы единичной длины. Если соединить концы векторов, то образуется трехгранная пирамида. Объем этой пирамиды является величиной, обратной PDOP. Ясно, что чем больше объем пирамиды, тем меньше PDOP, тем точнее определяется местоположение приемника. Например, хорошо, если наблюдается спутник вблизи зенита пункта и спутники, находящиеся невысоко над горизонтом и более-менее равномерно распределенные по азимуту. На самом деле, в области приема антенны приемника находятся много спутников, порой до девяти-десяти. Приемник вычисляет и выдает на дисплей PDOP для спутников, наиболее удачно в геометрическом смысле расположенных относительно приемника.
Структура системы
2. СТРУКТУРА СИСТЕМЫ GPS состоит из трех сегментов (segments): из космического (space), то есть спутникового сегмента, из сегмента управления и контроля и из сегмента пользователя. Здесь и далее использован термин «сегмент», хотя можно использовать и другой термин, например «подсистема». Спутниковый сегмент состоит из созвездия функционирующих в данную эпоху спутников. Сегмент управления и контроля содержит главную станцию управления и контроля, станции слежения за спутниками и станции закладки информации в бортовые компьютеры спутников. Сегмент пользователя – это совокупность спутниковых приемников и программного обеспечения, находящихся в распоряжении пользователей. Пользователя системы в первую очередь интересует его собственный сегмент, то есть имеющиеся у него приемники, а также спутниковый сегмент, в значительной мере обеспечивающий достоверность результатов. Вместе с тем действия сегмента управления и контроля иногда оказывают критическое влияние на полученные пользователем результаты. Были случаи, когда результаты получались абсурдными: например, высота пункта, расположенного на равнине, оказывалась такой, как будто он находится в высокогорье, либо в глубочайшей впадине. Пользователь не может контролировать систему и воздействовать на нее, но он обязан выявлять сбои в ее работе и на этапе обработки отсекать ложные данные и результаты.
2.1. Спутниковый сегмент. Номинально в каждую эпоху имеется 24 работающих (здоровых – healthy) спутника системы. Спутники распределены по шести круговым орбитам. На каждой орбите, таким образом, находится 4 спутника. Плоскости орбит разнесены по прямому восхождению на 60°. Наклон плоскости орбиты к плоскости экватора составляет 53°. Именно таков угол наклона i для спутников GPS. Расстояние спутников от поверхности Земли составляет 20200 км. При этом период обращения равен половине звездных суток. Наблюдателю это удобно. Если сегодня оказалось, что в такой-то интервал времени спутник занимал такое-то видимое с данного пункта положение, то завтра примерно в тот же интервал времени все повторится. Повторители геометрия наблюдений, то есть PDOP. Следовательно, можно планировать наблюдения на несколько суток вперед с точностью до нескольких минут. Помешать этому может только резкая корректировка орбит спутников или переход какого-либо из них из состояния здорового в состояние больного (unhealthy) или наоборот.
Командование GPS меняет статус спутников: корректирует орбиты, переводит спутник из состояния здорового в состояние больного, отключает операционные спутники, включает резервные спутники. На орбитах находятся еще три резервных спутника, которые иногда включают. Часто имеется не 24, а 25 и более операционных спутника. В резерве всегда держат несколько готовых к запуску спутников. Подробнее о том, что представляет собой спутник GPS, написано в разделе 3.
2.2. Сегмент управления и контроля. Этот сегмент называют также операционной системой управления и контроля – Operational Control System (OCS). Основными задачами сегмента является слежение за спутниками для определения их орбит и параметров хода часов спутников относительно GPST, прогноз эфемерид спутников, временная синхронизация часов спутников, загрузка навигационного сообщения на спутники. Существует также много других задач, таких, например, как обеспечение запусков новых спутников.
Первоначально главная станция управления и контроля располагалась в Вандерберге, Калифорния. Затем ее перевели в объединенный центр космических исследований – Consolidated Space Operations Center – CSOC. Центр расположен на базе военно-воздушных сил США в Фальконе, Колорадо Спрингс, штат Колорадо. Центр собирает и обрабатывает данные со станций слежения за спутниками системы. Используя фильтр Калмана, вычисляют и предсказывают эфемериды спутников, а также параметры хода часов спутников. Затем эти данные передают на одну из трех наземных станций закладки информации, каждая из которых совмещена со станцией слежения за спутниками. Станции закладки информации закладывают информацию в память бортовых компьютеров спутников. Делают это примерно каждый час. На главной станции находятся цезиевые стандарты частоты и времени, хранящие GPST. В задачи главной станции входит также контроль работоспособности спутников и системы в целом.
Имеется пять станций слежения за спутниками системы. Они расположены на Гавайях, в Колорадо Спрингс (США, совпадает с главной станцией системы), на острове Асунсьон в южной части Атлантического океана, на острове Диего Гарсия в Индийском океане и на острове Кваджалейн в южной части Тихого океана. Каждая из этих станций оборудована высокоточным цезиевым стандартом частоты и Р-кодовым (см. раздел 7.3.3) приемником. Приемник непрерывно, каждые полторы секунды, измеряет псевдодальности до всех находящихся над горизонтом спутников. В псевдодальности вводят поправки за задержки сигнала в ионосфере и нейтральной атмосфере. Затем данные сглаживают на интервалах в пятнадцать минут и передают предварительно обработанную таким образом информацию на главную станцию управления и контроля.
Эту сеть из пяти станций используют для создания широковещательных эфемерид и для определения параметров хода часов спутников. Именно эту информацию пользователь получает из спутникового сообщения. Более точную информацию, но с запаздыванием, получают из результатов наблюдений спутников на контрольных пунктах других сетей. Гораздо более глобальная и точная сеть – это Кооперативная международная сеть GPS – Cooperative International GPS Network (CIGNET), управляемая национальной геодезической службой (NGS) США. Координаты станций этой сети определены методом РСДБ. Полученные на этой сети эфемериды спутников называют точными. Они доступны, например, через INTERNET. Подчеркнем еще раз, что получить их можно только по прошествии некоторого времени после наблюдений. Следовательно, их используют, когда нужна наивысшая точность результатов, а задержка в их получении особой роли не играет.
В сегмент управления и контроля входят три станции закладки информации, которые называют также наземными контрольными станциями. Они совмещены со станциями слежения на островах Асунсьон, Диего Гарсия и Кваджалейн. Каждая такая станция содержит аппаратуру связи со спутниками и передающую антенну. Эти станции по спутниковым линиям связи получают с главной станции управления и контроля информацию об эфемеридах спутников и параметрах хода их часов. Эту информацию станции закладывают в память бортовых компьютеров спутников примерно каждый час. Для этого используют линию связи в диапазоне от 2,3 до 3,7 ГГц. Если по какой-либо причине закладка новых эфемерид приостановлена, то спутник транслирует старые эфемериды еще в течение 14 суток. Поскольку такие эфемериды являются результатом экстраполяции, то ошибка их постепенно увеличивается с 10 до 200 метров.
2.3. Сегмент пользователя. Пользователь GPS – это человек или коллектив, имеющий в своем распоряжении всю необходимую для работы спутниковую аппаратуру и программное обеспечение. Следовательно, сегмент пользователя – это совокупность находящихся в работе спутниковых приемников и другой аппаратуры. Пользователи различаются на категории по нескольким признакам: гражданские и военные, навигаторы и геодезисты, имеющие полный доступ к системе и имеющие ограниченный доступ. Как правило, американские военные имеют полный доступ к системе. Таких пользователей называют авторизованными, допущенными, уполномоченными – authorized users. Остальные пользователи, как правило, гражданские, – это неавторизованные – unauthorized – пользователи. Аппаратура авторизованных пользователей позволяет получать и обрабатывать информацию такой точности, на которую только способна система. Аппаратура неавторизованных пользователей до недавнего времени была способна получать только информацию с намеренно загрубленной точностью. Сейчас режим намеренного загрубления отключен.
Специалисты в области навигации как пользователи GPS заинтересованы в решении задач навигации. Эти задачи в значительной мере сводятся к определению мгновенных координат транспортного средства и к определению скорости и направления его перемещения. Необходимая точность такого определения зависит от того, в какой ситуации находится транспортное средство. Судно в открытом океане не требует высокоточной навигации, вполне удовлетворительна ошибка местоположения в сто метров и даже в километр (в кабельтов или в милю). Резко возрастают точностные требования, до дециметрового уровня, при подходе к портам, при маневрах в узкостях (проливы, фьорды) и в потоке движения. На самом деле навигационные приемники определяют не только месторасположение и вектор скорости. Приемник указывает требуемый и реальный курс на заданный объект, отклонение от маршрута, предписывает маневры, желательные для возвращения на курс. Вообще навигационный приемник многофункционален.
Геодезический приемник также выполняет функции навигационного приемника. Другими словами, он работает не только в фазовом, но и в кодовом режиме. Однако навигационные функции геодезического приемника не столь обширны, сколь у чисто навигационного приемника. Предназначение геодезического приемника не в навигации, но он всегда поможет оператору выйти в нужный пункт.
При геодезических измерениях одновременно работают несколько приемников. Как минимум – два. Определяют вектор базы, соединяющий пункты, на которых установлены антенны приемников. Определяют их на миллиметровом – сантиметровом Уровне точности. Точность зависит от производителя аппаратуры, от методики наблюдений, от расстояния между пунктами.
Спутники
3. Спутники. Спутник GPS – это платформа, несущая комплекс оборудования, обеспечивающего энергопитание спутника, возможность корректировки орбиты и работоспособность. Питание обеспечивают солнечные батареи и аккумуляторы. Орбиту корректируют с помощью реактивных двигателей небольшой мощности.
Термин работоспособность означает способность выполнять функции, возложенные на спутник. Спутник имеет антенну и приемник для приема сигнала со станций закладки информации. Спутник имеет бортовой компьютер для запоминания информации, для ее обработки и для координации работы спутника в целом. Ритм работы всей аппаратуры задают четыре цезиевых и (или) водородных стандарта частоты и времени. Частота колебаний стандартов равна 10,23 Мгц. Именно из этих колебаний путем умножения частоты, ее деления или преобразования гармонического колебания в кодовый сигнал получают все остальные сигналы спутника – несущие и модулирующие (кодирующие). Спутник имеет передатчик и антенну для передачи сигнала пользователю системы. На спутнике расположена также аппаратура стабилизации и ориентации, другая аппаратура.
Известны три класса спутников: Block I, Block II и Block IIR. Спутники Block I каждый весом в 845 килограммов запускали с 1978 по 1985 год с базы военно-воздушных сил в Калифорнии. Использовали ракету Atlas F. Заложенная в конструкцию продолжительность жизни спутника составляла 4,5 года. Некоторые спутники функционировали почти в три раза дольше. Угол наклона плоскости орбиты к плоскости экватора у спутников этого класса составлял 63°. У запущенных позже спутников – 55°. Спутники этого класса являлись в некотором смысле пробными, хотя полностью выполняли возложенные на них функции. Спутники следующей серии Block II были предназначены для создания операционного созвездия.
Первый спутник Block II, стоящий примерно 50 миллионов долларов и весящий более полутора тонн, был запущен 4 февраля 1989 года космическим центром имени Кеннеди с военно-воздушной базы Мыс Канавералл, штат Флорида, США. Использовали ракету-носитель Deltall. Конструкционная продолжительность жизни спутника этого класса составляла 6 лет, хотя некоторые спутники могли функционировать и 10 лет, поскольку на это время хватало запаса расходуемых материалов, в основном топлива. Различие между Block I и Block II связано с национальной безопасностью США. Сигнал спутника Block I был полностью доступен гражданскому пользователю, тогда как некоторые сигналы Block II ограничивают эту доступность.
Спутники класса Block IIR, практически полностью заменившие в настоящее время ранее запущенные, имеют конструкционную продолжительность жизни в 10 лет. Буква «R» означает модификацию или замену. На борту имеются водородные мазеры взамен рубидиевых и цезиевых стандартов частоты, установленных на спутниках предшествующих классов. Каждый спутник весит более двух тонн, стоит около 25 миллионов долларов. Запускают эти спутники с помощью Шаттла.
3.1. Структура сигнала спутника. Основой работы системы является точное измерение времени и временных интервалов. Термин точное означает, что для достижения наивысшей точности используют все доступные средства. На главной станции управления и контроля, а также на каждом спутнике установлены наиболее точные из существующих сейчас цезиевые и водородные стандарты частоты и времени. Частота колебаний стандарта равна 10,23 Мгц. Все колебания и сигналы спутника получают из этой частоты путем когерентного преобразования: умножения и деления частоты опорного генератора – стандарта частоты и времени. Два колебания несущей частоты получают умножением частоты опорного генератора на соответствующий коэффициент. Колебание L1=1575,42 МГц получают умножением на 154. Колебание L2=1227,60 МГц получают умножением на 120. Измерения на двух несущих частотах используют для реализации дисперсионного способа учета влияния ионосферы и для облегчения процедуры разрешения многозначности фазовых измерений.
Несущие колебания модулируют кодовыми сигналами: С/А-кодом и Р-кодом. При этом Р-кодом модулируют оба несущих колебания; С/А-кодом модулируют только колебания первой несущей частоты. Тактовая частота Р-кода равна частоте колебаний опорного генератора. Тактовую частоту С/А-кода получают делением частоты колебаний опорного генератора на десять. О кодах написано в разделе 3.4. Кроме того, несущие колебания модулированы навигационным спутниковым сообщением.
3.2. Навигационное сообщение, эфемериды. Навигационное сообщение называют также спутниковым сообщением или навигационным спутниковым сообщением. В англоязычной терминологии – это navigation massage. Далее для краткости будем использовать термин сообщение. Сообщение передается за 30 секунд. Но не вся информация передается в этот краткий отрезок времени. Например, альманах передается в течение нескольких сообщений, об альманахе см. далее. Сообщение содержит пять блоков (кадров, подкадров, по-английски – subframes). Каждый блок транслируется в течение 6 секунд и содержит 10 слов. Каждый блок начинается с телеметрического слова – telemetry word (TLM). Оно содержит синхронизирующий формат и диагностическое сообщение – сообщение или часть сообщения о статусе спутника и системы в целом. Далее идет ключевое слово – hand-over word (HOW). Этот термин можно перевести как слово, передаваемое из рук в руки. По смыслу HOW – это временная метка.
Первый блок содержит параметры часов спутника и коэффициенты модели ионосферы. Параметры часов – это поправка и ход часов спутника относительно GPST. Информацию о параметрах модели ионосферы используют только при работе с одночастотными приемниками. Если есть двухчастотный приемник, то применяют дисперсионный способ.
Второй и третий блок содержат эфемериды спутника, транслирующего данное сообщение. Эти эфемериды называют широковещательными. Их получают из результатов наблюдения спутников с пяти станций слежения.
Наблюдение спутников станциями слежения, первичная обработка результатов, передача их на главную станцию управления и контроля, обработка результатов там, передача их на станции закладки информации и сама закладка требуют времени. Следовательно, хранящиеся в памяти бортовых компьютеров и транслируемые широковещательные эфемериды в момент их трансляции уже устарели. Поэтому транслируемые эфемериды – это результат предсказания, экстраполяции. По этой причине эфемериды закладывают в память бортовых компьютеров спутников как можно чаще – примерно каждый час.
Четвертый блок зарезервирован для передачи служебной информации. Приемники гражданских пользователей не имеют возможности регистрации этой информации.
Пятый кадр содержит альманах спутников и информацию о состоянии системы. Альманах – это приближенные эфемериды всех спутников системы и данные о здоровье каждого спутника. Каждый спутник в течение 12,5 минут транслирует информацию о созвездии спутников. Чтобы получить альманах до начала наблюдений и использовать эти данные на этапе планирования необходимо выставить приемник на открытое место, подержать его там включенным минут 15-20, выключить и скачать данные на офисный компьютер. В процессе наблюдений свежий альманах получают вообще без дополнительных затрат времени.
Эфемериды спутника – это набор данных об орбите спутника и о положении спутника на орбите. Пользователя GPS интересуют геоцентрические координаты спутника в системе WGS 84 в момент ухода сигнала с этого спутника. Аппаратура пользователя вычисляет координаты спутника, используя данные, содержащиеся в файле эфемерид. Эфемеридная информация отнесена к референцному (опорному, исходному) моменту t0. Этот момент указан в файле эфемерид. В сообщении приведен также AODE (Age of Data) – «возраст» эфемеридных данных, то есть интервал времени, прошедший с момента последней закладки данных в память бортового компьютера. Напомним, что параметры эфемерид являются оскулирующими и относятся к референцному моменту. Далее конспективным образом перечислена информация, содержащаяся в широковещательных эфемеридах, √α- корень квадратный из большой полуоси эллипса орбиты, е – эксцентриситет орбиты. Ω – прямое восхождение восходящего узла орбиты спутника. Ω' – скорость изменения прямого восхождения восходящего узла орбиты спутника, i – угол наклона плоскости орбиты к плоскости экватора, w – аргумент перигея, i' – скорость изменения угла наклона. М0 – средняя аномалия на референцный момент. Dn – отклонение значения среднего движения от предвычисленного. Сuс и Cus – амплитуды косинусоидального и синусоидального членов в формуле для поправки в аргумент широты. Сrс и Crs – амплитуды косинусоидального и синусоидального членов в формуле для поправки в радиус орбиты. Cic и Cis – амплитуды косинусоидального и синусоидального членов в формуле для поправки в угол наклона орбиты. Формулы для возмущений оскулирующих элементов учитывают только влияние на движения спутника сжатия Земли.
3.3. Вычисление орбитальных координат спутника по его эфемеридам. Рассмотрим, как используют эфемериды спутника для вычисления его прямоугольных координат Х0 и Y0 в орбитальной системе координат на момент наблюдений. Для этого рассмотрим формулы (3):
Отсюда видно, что задача сводится к определению на момент наблюдений радиуса орбиты r спутника и аргумента широты u. Момент наблюдений t получают из фиксации момента прихода на приемник временной метки. В качестве исходной информации используют также значение одной из фундаментальных геодезических постоянных µ – произведение гравитационной постоянной на массу Земли. В WGS 84 µ=3,986008•1014 м3/сек2.
Процедуру вычисления орбитальных координат разделяют на четыре этапа. На первом этапе вычисляют истинную аномалию v. Порядок вычислений следующий. Вычисляют временной интервал ∆t, прошедший от референцной исходной эпохи t0 до момента t наблюдений: ∆t=tt0. Вычисляют приближенное значение среднего движения n0=(µ/а□)1/2. Вычисляют уточненное значение среднего движения n=n0+∆n. Вычисляют среднюю аномалию M=M0+n∆t. Используя уравнение Кеплера M=E+esinE, вычисляют эксцентрическую аномалию Е. И окончательно на этом этапе вычисляют истинную аномалию v, используя формулы:
cosv=(cosE–e)/(1–ecosE) и
sinv=(1–e2sinE)1/2/(1–ecosE).
На втором этапе вычисляют значение аргумента широты u. Порядок вычислений следующий. Вычисляют приближенное значение аргумента широты u0=v+w. Вычисляют поправку в приближенное значение аргумента широты за влияние сжатия Земли на орбиту спутника по формуле: ∆u=Cuccos2u0+Cucsin2u0. Напомним, что коэффициенты С содержатся в эфемеридах.
Смысл индексов при этих коэффициентах состоит в следующем. Индекс и означает, что вычисляется именно аргумент широты u. Индексы сие означают, что они стоят соответственно при косинусоидальном и при синусоидальном членах. Далее такая система индексации сохранена. Окончательно на этом этапе вычисляют уточненное значение аргумента широты. На третьем этапе вычисляют радиус r орбиты спутника. Порядок вычислений следующий. Вычисляют приближенное значение радиуса орбиты, используя формулу: r0=a(1–ecosE). Вычисляют поправку в радиус орбиты за сжатие Земли: ∆u=Cuccos2u0+Cresin2u0. Смысл нижних индексов тот же, что и на предшествующем этапе. И окончательно на этом этапе вычисляют уточненное значение радиуса орбиты: r=r0+∆r.
На четвёртом этапе вычисляют координаты спутника в орбитальной системе координат по формулам (3).
Координаты спутника, полученные по широковещательным эфемеридам, могут содержать ошибку до 100 метров. Причины столь невысокой точности следующие. Во-первых, широковещательные эфемериды по своей сути являются результатом предсказания орбиты, то есть это – экстраполированные эфемериды. Во-вторых, при их вычислении учитывают только один, правда, наиболее существенный, фактор, возмущающий орбиту спутника – влияние сжатия Земли. Неучет остальных факторов ведет к падению точности при сколько-нибудь длительной экстраполяции.
3.4. Коды. Несущие колебания спутника манипулированы по фазе кодовыми сигналами. Вернемся к рассмотрению кодов, начатому в разделе 3.1. По статистическим характеристикам коды являются случайными, следовательно образуют широкополосный сигнал. Длина когерентности такого сигнала мала, поэтому при корреляционной обработке получают узкий главный максимум функции корреляции. В свою очередь, это позволяет однозначно и с высокой точностью измерять временную задержку в кодовом режиме. Приемно-регистрирующая аппаратура, не «знающая» закономерности формирования кода, воспримет сигнал спутника как шумовой, случайный. На самом деле коды формирует закономерно, хотя вид закона сложен. По причине сказанного сигнал спутника называют псевдошумовым, а коды – псевдослучайными.
Существуют два вида измерительных кодов. Легко доступный, легко обнаруживаемый, широковещательный код – C/A-code – Coarse Acquisition code. Точный P-code – Precision code. Спутник имеет индивидуальный С/А-код, повторяющийся каждую миллисекунду. Приемник идентифицирует и захватывает сигнал спутника на частоте Lx легко, поскольку эта частота модулирована С/ А-кодом. Гораздо сложнее дело обстоит с захватом сигнала спутника на частоте L2, то есть на второй несущей частоте. С/А-код на нее не подают, так что захват сигнала и последующие наблюдения возможны только в Р-коде. Это затрудняет работу пользователя и это затруднение намеренно заложено в структуру системы.
Спутнику в данную эпоху присущ Р-код, повторяющийся через неделю. В то же время, системе присущ весь Р-код в целом. Длительность Р-кода системы равна 266,4 суток. Другими словами, весь длинный Р-код системы разделен на недельные отрезки, интервалы. Каждый отрезок в данную эпоху приписан конкретному спутнику. Изначально доступ к Р-коду имели только авторизованные пользователи, в основном, американские военные. Сейчас аппаратура практически всех пользователей имеет доступ к Р-коду. Этот доступ осложнен тем, что Р-кодовый сигнал подвергнут дополнительному кодированию (шифрованию) так называемым Y-кодом. Как сказано в литературе, сделано это для того, чтобы предотвратить возможность нарушения работы системы путем внешнего вмешательства. Такой режим работы назван Anti-Spoof ing (AS) – режим противодействия несанкционированному воздействию. Он сводится именно к использованию Y-кода. В свою очередь, Y-кодирование – это обмен недельными отрезками Р-кода между спутниками в последовательности, известной лишь персоналу, управляющему системой. Если эта последовательность неизвестна пользователю, то есть его приемник не содержит соответствующего чипа, то отсутствует возможность захватить сигнал в Р-коде на второй несущей частоте и дорогой высокоточный двухчастотный приемник может работать только как одноча-стотный. Производители аппаратуры, однако, тем или иным путем преодолели эти трудности, например, заплатив за возможность установки в приемники соответствующих чипов.
Наблюдения в С/А-коде называют Standard Positioning 102 Servise (SPS) – стандартной службой позиционирования. Навигационные координаты в этом режиме определяют с ошибкой 100-200 метров. Наблюдения в Р-коде называют Precise Positioning Servise (PPS) – служба определения точного местоположения. Навигационные координаты в этом режиме определяют с ошибкой порядка 10-20 метров.
Обработка спутниковых фазовых измерений
4. ОБРАБОТКА СПУТНИКОВЫХ ФАЗОВЫХ ИЗМЕРЕНИЙ. Обработка геодезических измерений – это этап работы, следующий за выполнением измерений. Результатом обработки является готовая продукция: каталог координат пунктов геодезической сети, цифровая карта, геоинформационная система региона или объекта. Здесь сделаем акцент на создании каталога координат. Это – важная задача; от того, насколько эффективно она решена, зависит возможность решения всех последующих задач. В GPS процедура обработки компьютеризована. Программное обеспечение «скрывает» некоторые процедуры от пользователя. Вместе с тем активное вмешательство пользователя в процедуру обработки необходимо.
При обработке геодезических измерений используют коррелатный и параметрический методы. В GPS используют параметрический метод. При этом подходе прежде всего необходимо составить уравнение, связывающее измеряемую величину с определяемыми параметрами. В спутниковой геодезии измеряемые величины и определяемые параметры связаны основным соотношением, иллюстрируемым рисунком.
Будучи записанным в векторном виде, это соотношение имеет вид (4):
В этом выражении R – геоцентрический вектор пункта Р; ρ – топоцентрический вектор спутника S; r – геоцентрический вектор спутника. Геоцентрический вектор спутника получают из его эфемерид. Геоцентрический вектор пункта является тем, что необходимо получить, работая в навигационном режиме. При выполнении геодезических измерений получают разность геоцентрических векторов пунктов. Будучи по геометрической сути системой дальномерной, GPS позволяет из измерений получать длину вектора ρ, то есть его модуль r. Уравнение (4) принимает вид (5):
Именно это соотношение используют при обработке результатов измерений. Для этого его выражают в координатной форме, линеаризуют и выполняют все остальные процедуры, предусмотренные совершенным механизмом способа наименьших квадратов. Спутниковые измерения имеют много общего с другими геодезическими методами. Есть, однако, и особенности. Проявляются они на этапе постобработки и при разрешении многозначности фазовых измерений.
4.1. Постобработка. На этом этапе работ разрешают многозначность фазовых измерений и вычисляют вектор базы в WGS 84. Другими словами, вычисляют компоненты вектора, соединяющего пункты, на которых установлены приёмники.
При правильной организации работы на объекте наблюдатели (операторы) выполняют первичную обработку данных сразу вслед за выполнением измерений. Оператор, прибыв после наблюдений на базу (в камеральное помещение, в офис) и поставив на зарядку аккумуляторы, приступает к постобработке. Задача состоит в том, чтобы выяснить, успешными ли были наблюдения прошед- шего дня и насколько полученные результаты согласуются с тем, что было сделано ранее. При выявлении проблем вносят корректировки в планы на следующий день.
Зарегистрированные приемниками данные (необработанные данные, сырые данные, raw data) скачивают в офисный компьютер. Программное обеспечение таково, что оно может контролировать действия оператора и корректность вводимой информации. Говорят, что аппаратура обладает «защитой от дурака» – fool proof. Например, приемник не позволит выключить себя, если оператор забыл ввести высоту антенны. Вместе с тем, аппаратура не может контролировать все действия оператора. Центрирование антенны над пунктом – процедура бесконтрольная. При измерении высоты антенны над пунктом и при введении ее значения в память приемника оператор может допустить ошибку, а программное обеспечение не сможет эту ошибку выявить. Выполняя постобработку, оператор выявляет ошибки в исходной информации: в высоте антенны, в имени файла, в идентификаторе пункта. Выявив ошибку, оператор устраняет ее.
Обработав очередную базу, оператор выясняет, как результат согласуется с исходными данными и с результатами, полученными им ранее. Речь идет о том, как согласуются полученные разности координат с каталожными разностями координат исходных пунктов и каковы координатные невязки замкнутых фигур. Как сказано ранее, согласование результатов спутниковых измерений с созданными ранее сетями создает проблемы. Что касается невязок замкнутых фигур, то векторная сумма баз должна быть равна нулю. Другими словами, должны выполняться равенства (7.6):
Существенное отклонение от этого условия свидетельствует о низкой точности или о грубых ошибках в результатах. Не существует инструкции, оговаривающей допуски, поэтому данный вопрос решают, исходя из личного опыта. Основное время при постобработке занимает разрешение многозначности.
4.2. Многозначность, разности фазовых измерений. Эти два вопроса рассмотрим на основе формулы (1). Существуют две проблемы: разрешение многозначности и учет начальных фаз δφ? и δφr колебаний генераторов спутника и приемника. Приемник не только измеряет разность фаз φ(t), но непрерывно регистрирует результат этого измерения. Такая процедура называется счетом целых фазовых циклов. В наземных системах счет идет достаточно медленно: единицы циклов в секунду или в минуту. В спутниковой системе приемник считает тысячи циклов в секунду.
Существуют сбои в счете и это – отдельная проблема. В целом многозначность разрешают способом, во многом аналогичном способу радиолага и способу фазового зонда, используемым в наземных системах. Отличие в том, что расстояние до спутника в начальный момент измерений в спутниковой системе с достаточной точностью знать нельзя. Сюда примешиваются проблемы, связанные с неопределенностью начальных фаз. Если впрямую использовать уравнение (1), то нет основания округлять приближенно определенное значение Nў до ближайшего целого числа, как это делают в дальномерах. И кроме того, если при наземных измерениях наблюдатель имеет достаточно времени для разрешения многозначности, при спутниковых измерениях многозначность необходимо разрешить «мгновенно», быстрое перемещение спутника не дает возможности повтора. Проблемы этим не ограничиваются. Напомним, что GPS создавалась как навигационная кодовая система, изначально не предназначенная для фазовых измерений. В ней нет стройной сетки частот, специально предназначенной для разрешения многозначности. Все сказанное приводит к тому, что разрешение многозначности – самая большая проблема в спутниковых измерениях. Решить эту проблему удается, формируя разности результатов фазовых измерений. В геодезических измерениях участвуют несколько приемников, как минимум два. Каждый приемник одновременно принимает и регистрирует сигнал нескольких спутников. Рассмотрим два элементарных случая: один приемник одновременно принимает и регистрирует сигнал двух спутников; два приемника одновременно принимают и регистрируют сигнал одного спутника. Первый случай иллюстрирован рисунком 2.
2. Первая разность спутник-спутник. 3. Первая разность приемник-приемник. 4. Вторая разность первых разностях. Второй случай иллюстрирован рисунком 3. На этапе постобработки программное обеспечение формирует разности фазовых измерений. Другими словами, в первом случае формируют разность фаз сигналов от двух спутников на одном приемнике. Во втором случае формируют разность фаз сигналов от одного спутника на двух приемниках. Это называют первой или одинарной разностью «спутник-спутник» и «приемник-приемник».
Если сформировать разность выражений вида (1) для варианта спутник-спутник, то в разности исключается начальная фаза dφ? колебаний приемника. Если сформировать разность выражений вида (1) для варианта приемник-приемник, то в разности исключается начальная фаза dφ? колебаний спутника. Чтобы исключить и ту и другую начальные фазы, необходимо сформировать вторую или двойную разность. Двойную разность получают, выбрав из результатов данные, полученные из одновременных наблюдений двух спутников двумя приемниками. Этот вариант приведен на рисунке 4. Другими словами: вторая разность – это разность двух первых разностей. При формировании разностей фазовых измерений система перестает быть дальномерной и превращается в разностную. Изоповерхности становятся гиперболоидами и геометрический фактор (угол засечки), как правило, ухудшается. Следует также подчеркнуть, что при формировании разностей выражений вида (1) образуются и разности N. Первая разность содержит разность целых уложений длин волн в расстояниях до спутника. Вторая разность содержит разность целых уложений длин волн, содержащихся в первых разностях.
Вторая разность имеет замечательную особенность. Поскольку во второй разности исключаются начальные фазы колебаний спутника и приемника, то теоретически число уложений длин волн во второй разности действительно является целым. Поэтому есть право при обработке округлять число уложений длин волн до целого числа. Так и делают. Более того – вторые разности – это основа обработки в том смысле, что именно на основе вторых разностей получают окончательные результаты. Самой большой проблемой при этой обработке является разрешение многозначности. Необходимо определить набор целых чисел N0 в начальный момент наблюдений для каждой пары пунктов и для каждой пары спутников, наблюдаемых с этих пунктов. Проблема аналогична задаче радиолага или фазового зонда, но решается она совершенно по-другому. В третьих разностях проблема многозначности не решена, но снята.
Третья разность – это разность двух вторых разностей. Геометрия иллюстрирована рисунком 5. В начальный момент времени t1 формируют вторую разность и продолжают непрерывную обработку до момента t2. В разности исключается параметр многозначности N0. Это и означает, что проблема многозначности снимается. Расплачиваться за это приходится тем, что ухудшается геометрия наблюдений, то есть изоповерхности пересекаются под углами, далекими от прямых углов. В результате ошибка определения вектора базы лежит в пределах 1-3 метра. Такая точность неприемлема для геодезии, тем не менее третьи разности в процедуре обработки результатов используют.
Еще раз напомним, что в геодезии обработку результатов измерений выполняют по способу наименьших квадратов, основанному на составлении и решении системы линейных уравнений. В GPS, также как и в большинстве других геодезических методов, уравнения, связывающие измеряемые величины и определяемые параметры, линейными не явля- ются. На этот случай предусмотрена процедура линеаризации уравнений. Функцию измеренной величины от определяемых параметров раскладывают в ряд Тейлора и ограничиваются членами с первыми частными производными. При этом необходимо знать приближенные значения определяемых параметров и предвычисленное по этим значениям приближенное значение измеряемой величины. Приближенные значения координат вектора базы, используемые впоследствии при окончательном решении по вторым разностям, получают из решения по третьим разностям.
Существует несколько подходов к составлению пакета программ для обработки результатов измерений. Зачастую алгоритм обработки или его детали пользователю недоступны. Тем не менее, общий подход к обработке состоит в следующем. Программное обеспечение формирует первые разности фазовых измерений, из них формирует вторые разности, а затем – третьи разности. Первое, самое приближенное решение вектора базы получают из кодовых и допплеровских измерений. Уточняют его из решения по третьим разностям; этот уточненный результат используют в качестве приближенного для решения по вторым разностям. Как было сказано, наиболее трудным этапом при обработке по вторым разностям является разрешение многозначности.
4.3. Разрешение многозначности. В GPS разрешение многозначности сводится к вычислению параметров многозначности N0 , то есть числа целых уложений длин волн во второй разности для каждой пары пунктов и для каждой пары спутников в начальный момент регистрации результатов. Как было сказано, это напоминает задачу радиолага или фазового зонда в наземных системах. Принципиальное отличие состоит в следующем. В наземных системах имеется возможность определить параметр многозначности, когда носитель начинает движение с пункта, расстояние до которого с опорного пункта известно изначально. В спутниковой системе такая возможность отсутствует. Нет твердого пункта в околоземном пространстве, с которого спутник мог бы начать свое движение. Единственный выход состоит в том, чтобы включить набор параметров многозначности N0 в число определяемых параметров. Другими словами, в уравнивании в качестве неизвестных участвуют помимо координат вектора базы еще и параметры многозначности N0. Отсюда ясна разница между разрешением многозначности в наземных и спутниковых измерениях. При работе с наземным дальномером или с наземной системой оператор (наблюдатель) обязан построить работу так, чтобы определить целое число N безошибочно. Он обязан определить истинное значение N в процессе наблюдений и не может прекратить наблюдения до тех пор, пока не убедится в том, что многозначность разрешена. При работе со спутниковой аппаратурой оператор может узнать, разрешена ли многозначность только после постобработки, то есть уже прекратив наблюдения. Это утверждение не касается работы в режиме RTK. Более того, в результате разрешения многозначности получается набор вероятнейших значений параметров многозначности, но вовсе не истинные их значения.
Разрешение многозначности спутниковых измерений и успех этой процедуры имеет вероятностный смысл. Чем длительнее сессия наблюдений и чем меньше препятствий, закрывающих небосклон, тем больше вероятность успеха. С другой стороны, длительность сессии не может быть непомерно большой. Нет смысла находиться на пункте, скажем, четыре часа, если опыт говорит, что достаточно наблюдать полтора часа. Длительность сессии наблюдений определяет опытный руководитель проекта с учетом мнения опытных операторов. Бывает, что условия наблюдений на каком-либо пункте крайне неблагоприятны, но отнаблюдать его необходимо. Например, пункт находится близ многоэтажного здания, закрывающего половину небосклона. В таких случаях вопрос о длительности сессии на этом пункте решается индивидуально по принципу «чем дольше, тем лучше». Разрешение многозначности выполняет не оператор вручную, а программное обеспечение (soft). Порядок разрешения многозначности следующий. Используя эфемеридную информацию и приближенные координаты вектора базы, вычисляют параметры многозначности N'0. Штрих поставлен потому, что параметры многозначности содержат ошибки и не будут целыми, так, как это должно быть. Округляют параметры многозначности до ближайших целых чисел, получая тем самым набор параметров многозначности N0. Значения этих параметров не будут ни истинными, ни вероятнейшими. Получение вероятнейших значений обеспечивает дальнейшая процедура.
Используя набор целочисленных параметров многозначности, вычисляют новые координаты вектора базы. Они также ошибочны, поскольку ошибочны значения параметров многозначности. Однако на этом этапе достигается соответствие между параметрами многозначности и координатами вектора базы. Далее наступает этап, занимающий основное время обработки: сканирование. Компьютер последовательно изменяет (увеличивает и уменьшает) на 1,2,.. значения параметров многозначности. Это делают во всех комбинациях, получая каждый раз новое решение для вектора базы. Число комбинаций и решений огромно. Одновременно на основе статистического анализа компьютер оценивает вероятность V справедливости каждого из полученных решений. Он выстраивает решения в иерархию по их вероятности: наиболее вероятному решению приписывает вероятность V1 наиболее вероятному из оставшихся – вероятность V2 и так далее. Завершающим этапом является вычисление отношения – ratio=V1/V2. Смысл в том, чтобы оценить, насколько велика вероятность справедливости первого решения по сравнению с вероятностью справедливости второго решения. Если ratio близко к единице, то есть решения примерно равновероятны, то многозначность не разрешилась и наблюдения на данной базе надо повторить при более благоприятной геометрии наблюдений и при большей длительности сессии. При благоприятных условиях наблюдений случается, что ratio близко к сотне. В этом случае операторы уверены в успехе наблюдений на данной базе, хотя окончательное решение принимают, проанализировав распределение по сети невязок замкнутых фигур.
Источники ошибок и точность измерений
5. ИСТОЧНИКИ ОШИБОК И ТОЧНОСТЬ ИЗМЕРЕНИЙ. Существует несколько источников ошибок измерений и источников ошибок определения интересующих параметров. Принято разделять их на источники ошибок, вызванные работой аппаратуры, на источники ошибок, связанные с влиянием внешней среды и влиянием ошибок исходных данных, то есть в данном случае, с ошибками координат спутников.
К аппаратурным источникам ошибок относят факторы, определяющие разрешающую способность аппаратуры. Мерой разрешающей способности является ошибка, с которой пара приемников определяет вектор базы в неких идеальных условиях при длительной сессии наблюдений. Понятие «идеальные условия» трудно сформулировать строго. Можно сказать, что при таких условиях вокруг каждого приемника отсутствуют препятствия, a PDOP близок к единице. Понятие «длительная сессия» также можно определить только на качественном уровне. Продолжительность сессии и длительность цикла сбора информации таковы, что дальнейшие наблюдения уже не повышают точность. Это примерно 2-3 часа при длительности цикла в 15 секунд, хотя какие-либо инструкции на этот счет отсутствуют. Опыт показывает, что при этом вектор базы длиной порядка километра определяется с ошибкой 2-3 миллиметра. Подчеркнем еще раз, что речь идет о внутренней, аппаратурной точности, обеспечиваемой качеством аппаратуры и уровнем ее программного обеспечения. Используя аналогию с наземной аппаратурой, можно сказать, что, понятие «разрешающая способность комплекта спутниковых приемников» аналогична понятию «инструментальная точность теодолита», мерой которой является ошибка измерения угла в лабораторных условиях.
Изначально аппаратура определяет вектор базы D0, то есть вектор, связывающий фазовые центры антенн спутниковых приемников, см. рис. 6. Фазовый центр – это точка, или, точнее говоря, область, куда антенна «собирает» сигналы всех видимых спутников. Продолжая аналогию, можно сказать, что понятие фазового центра аналогично понятию точки пересечения вертикальной и горизонтальной осей теодолита. Используя введенную оператором информацию о высоте антенны и о типе этой антенны, программное обеспечение приводит результаты к центрам пунктов, то есть переходит от вектора D0 связывающего фазовые центры антенн, к вектору D, связывающему центры пунктов.
Рис. 6. Антенны спутниковых приемников, установленные на пунктах геодезической сети: D0 – связывает фазовые центры; D – связывает центры пунктов.
Положение фазового центра на антенне ничем не закреплено, но на каждой антенне, предназначенной для точных измерений, приведена схема, показывающая расположение центра относительно частей антенны. Это положение определяют для каждой антенны индивидуально в результате тщательных исследований. В идеале фазовый центр должен находиться на геометрической оси антенны, в реальности это условие может и не выполняться. Чтобы исключить или ослабить влияние этого источника ошибок на результаты определения векторов баз, все антенны ориентируют единообразно. На антенне имеется стрелка, которую, устанавливая антенну на пункте, направляют на север. При установке используют оптический отвес (лот-аппарат). Для измерения высоты антенны используют рулетку либо специальный жезл. Вся эта процедура аналогична той, что выполняют при использовании наземной аппаратуры: дальномеров, теодолитов, тахеометров. Надежность и тщательность исполнения этой процедуры не могут быть проконтролированы программным обеспечением. Поэтому процессу центрирования и нивелирования антенны, измерению ее высоты и вводу значения высоты в память приемника уделяют особое внимание: контролируют все, что можно, делают повторные измерения высоты, делают дополнительные записи в полевом журнале. В целом влияние этого источника ошибок составляет 2-3 миллиметра. Вообще операторы предпочитают работать на пунктах, где предусмотрено принудительное центрирование антенны.
С антенной связан еще один источник ошибок: многолучевость или многопутностъ (multipass) сигнала. Хотя сигнал спутника и принадлежит к диапазону сверхвысоких частот, его волны отражаются от некоторых не слишком шероховатых иоверхностей. Длина волны несущих колебаний составляет примерно 0,2 метра, поэтому любая поверхность, размеры шероховатостей которой меньше этой величины, играют для данной волны роль зеркала. Радиоволны отражаются от ровной поверхности земли и от поверхности расположенного близ антенны препятствия, например, от стены здания. Отраженный сигнал попадает на антенну также, как и сигнал, пришедший прямо со спутника. Длина пути, пройденного отраженным сигналом, больше интересующей наблюдателя длины пути прямого сигнала. Прямой сигнал, взаимодействуя с отраженным, искажается и это влияет на точность измерений. В наземной радиогеодезии такое явление известно, это – влияние на результаты радиодальномерных измерений отражения радиоволн от подстилающей поверхности и окружающих объектов. Чтобы «отсечь» отраженные от земли радиоволны используют граундплейн (groundplane). Это – изображенный на рисунке 6 металлический диск диаметром около 0,5 метра со стрелкой, которую и надо направлять на север. Антенна с граундплейном громоздка, ее трудно применять в режимах наблюдений, когда аппаратура в процессе движения включена. Тем не менее именно такие антенны используют для получения наиболее точных результатов. Граундплейн, разумеется, не отсекает сигнал, отраженный от близрасположенного препятствия. Препятствие не только ухудшает геометрию наблюдений, закрывая часть небосклона, но и создает условия для многопутности. Поэтому и стремятся располагать пункты на открытых местах. Получается это не всегда. Например, бывает, что необходимо определить пункт, находящийся близ здания. Единственной мерой, также, как и мерой по повышению вероятности успешного разрешения многозначности, является увеличение длительности сессии наблюдений. Дело в том, что влияние многопутности с течением времени носит циклический характер и при достаточно длительной сессии в среднем исключается или ослабляется. При особо неблагоприятных условиях приходится находиться на пункте 5-6 часов и затем прикладывать большие усилия на этапе постобработки.
Влияние внешней среды, то есть атмосферы, достаточно подробно рассмотрено в разделе 5. Учет влияния атмосферы состоит в определении задержки сигнала в ионосфере, стратосфере и в тропосфере. Если расстояние между пунктами, на которых установлены приемники, невелико и имеет порядок десятка километров, то сигнал от спутника проходит до приемников по близким путям и испытывает на этих путях примерно одинаковые задержки. Считают, что учет задержек сигнала в атмосфере на таких базах особых проблем не составляет, хотя этот вопрос изучен недостаточно. Можно считать, что влияние этого источника ошибок лежит в пределах сантиметра.
Ошибки координат спутника как исходного пункта впрямую входят в ошибки координат приемника. Поэтому, если точность эфемерид такова, что геоцентрические координаты спутника получаются с ошибкой 10 метров, то и навигационные (абсолютные) координаты приемника невозможно получить с меньшей ошибкой. Иначе обстоит дело с определением разностей координат пунктов, расстояние между которыми гораздо меньше, чем расстояние до спутника. Этот источник ошибок влияет на разности координат пунктов гораздо слабее, чем на координаты самих пунктов. Ошибка mD определения вектора базы во столько раз меньше ошибки mD координат спутника, во сколько раз длина D базы меньше высоты Н орбиты спутника над поверхностью Земли. Напомним, что высота эта составляет 20 тысяч километров. В виде формулы: mD/D=mk/H. Например, на базе длиной 20 километров ошибка mD определения вектора этой базы будет составлять примерно одну тысячную от ошибки тк координат спутника. При mk=10м mD составит один сантиметр. Если пользователя не устраивает такая точность, то он будет вынужден использовать не широковещательные, а точные эфемериды.
То обстоятельство, что разности координат пунктов получаются гораздо точнее, чем координаты самих пунктов используют не только в геодезии, но и в навигации, когда аппаратура определяет кодовые псевдодальности и интерес представляют в основном плановые координаты носителя, чаще всего судна. На берегу судоходного залива или вблизи порта устанавливают дифференциальную станцию. Это – пункт с известными твердыми координатами. На нем установлен непрерывно работающий в Р-коде спутниковый приемник. Там же установлены передатчики, транслирующие дифференциальные поправки, о которых скажем несколько позже. Имеется комплекс оборудования, гарантирующего непрерывность работы, в том числе основные и резервные источники питания. Непрерывность работы важна, поскольку перерыв в обеспечении навигации судна, находящегося в узкости или в потоке других судов может привести к катастрофическим последствиям.
На дифференциальной станции непрерывно вычисляют координаты этой станции, получаемые из наблюдений спутников. Они отличаются от твердых координат станции вследствие ошибок измерений, вследствие влияния внешней среды и ошибок эфемерид спутников. Следующим шагом является вычисление разностей непрерывно получаемых и твердых координат дифференциальной станции. По этим разностям вычисляют разности практически измеренных и «твердых» псевдодальностей. Разности координат и разности псевдодальностей и называют дифференциальными поправками. Их транслируют в эфир. Аппаратура пользователя, оборудованная соответствующими приемными устройствами, способна принимать эти поправки.
Пользователь, находящийся на расстоянии в несколько десятков километров, также непрерывно или с какой-то дискретностью определяет свои «спутниковые» координаты. Координаты и псевдодальности искажены такими же ошибками, что и на дифференциальной станции. Поэтому введение дифференциальных поправок прямо в ходе навигации позволяет уменьшить ошибку определения местоположения подвижного носителя с уровня в несколько десятков метров до уровня в несколько дециметров. Такой режим работы называют дифференциальным.
РЕЖИМЫ НАБЛЮДЕНИЙ*
Этапы создания геодезической сети*
* Главы из книги: Шануров Г.А., Мельников С.Р. «Геотроника. Наземные и спутниковые средства и методы выполнения геодезических работ». Издано МИИГАиК и НПП «Геокосмос». Москва. 2001 год.
Использование сервиса Egnos при проведении спутниковых геодезических измерений
Статья Е.В. Погореленко («Земус плюс», Волоколамск), журнал «Геопрофи» № 6 – 2006 год.
Применение калибровочных районов при топографо-геодезических работах со спутниковыми приемниками GPS
Статья А.В. Войтенко (Западно-Сибирский филиал ФГУП «Госземкадастрсъемка» – ВИСХАГИ, Омск), журнал «Геопрофи» №1 – 2006.